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The paper considers the flow field during spin-up from rest of liquid metal in
a cylindrical stationary cavity due to a rotating transverse uniform low-frequency
magnetic field. It is assumed that the Ekman and the magnetic Reynolds numbers are
small. An approximate model, based on matching of Bödewadt-type layers with an
inviscid core, with possible influence from the sidewall, for laminar flow is developed.
It is shown that the angular velocity in the core is a function of time only. Analytical
solutions for the angular velocity and the meridional flow in the core are presented,
and supplemented by finite-difference results to show the sidewall effects. The spin-
down following the switch-off of the magnetic forcing, the influence of the axial
variations of the magnetic field, and the relevance to turbulent flows are discussed.

1. Introduction
Rotary electro-magnetic stirring is an important problem in the metal industry.

Schematically, it can be described as follows: liquid metal in a stationary axisymmetric
container (cavity) of finite length is subjected to the influence of a transverse uniform
magnetic field that rotates about the axis. The objective is to describe the flow field
of the liquid, which will evidently be of the ‘rotating’ or ‘swirling’ type.

Davidson (1992) gives a comprehensive list of references to studies on this problem
and provides a ‘unified theoretical framework’, which is supported by comparison
with experimental work of Robinson (1973). The analysis of Davidson is concerned
with steady-state flows only, in which the motion is governed by a balance between
the magnetic driving force and viscous friction on the boundaries.

The main objective of the present work is to investigate the initial transient stage of
the flow field in the liquid metal from a state of rest (relative to the container) to the
final steady state. This may be considered as a stage of ‘spin-up from rest’, i.e. from no
swirl to the final state dominated by the rotational motion of the ‘core’. (We shall also
consider briefly the opposite situation of the time-dependent ‘spin-down’ flow that
develops after the magnetic forcing is switched off, but this is a more conventional
problem.) Davidson (1989) and Davidson & Boysan (1991) have treated transient
flows in relevant circumstances, but have restricted their investigations to very short
time periods, of less than one revolution of the fluid, for which the viscous boundary
layers are not important. The transient to steady state which we study here is much
longer, typically one hundred revolutions of the fluid, and critically affected by the
viscous boundary layers.

Spin-up and spin-down of classic fluids is an extensively studied and fascinating

† Permanent address: Computer Science Department, Technion, Haifa 32000, Israel.
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phenomenon. It is fairly well understood and modelled in axisymmetric (mostly
cylindrical) configurations (Greenspan 1968; Benton 1973, Benton & Clark 1974;
Weidman 1976a, b; Savaş 1992). However, the present spin-up is unusual because it
is not driven by boundary conditions on the solid walls. Here the increase of angular
momentum in the fluid is caused by a body force, the rotating magnetic field, while
the stationary walls actually tend to retard the motion (i.e. to spin down the fluid).
Consequently, features typical of both spin-up and spin-down to rest coexist in the
present case, and the steady state reflects a balance between them.

The understanding of the initial spin-up stage is therefore interesting from an
academic point of view. It has also obvious practical implications. For instance, in
an aluminium casting process the spin-up time of the melted pool may affect the rate
of replenishment and the speed of withdrawal of the solid ingot (see Davidson 1992,
figure 2). Also, in a stirring process based on turning on and off the magnetic field
for short time intervals (Kojima et al. 1983), the spin-up and spin-down phenomena
have evident and perhaps major contributions.

The rotating flow investigated here may be classified as ‘nonlinear’ because the
presence of the stationary solid walls is completely inconsistent with an attempt to
consider the motion a ‘linear’ small perturbation around some state of solid-body
rotation. A consequence is that a properly defined Rossby number (the ratio of inertia
to Coriolis forces) would be of order unity.

To proceed, several simplifications are introduced. The driving body force is as-
sumed to act in the azimuthal direction and modelled as time-independent, linearly
increasing with the radial distance from the axis. The geometry of the container is
taken to be cylindrical, with outer radius r∗o and height H∗ (the asterisk denotes a
dimensional variable); the upper boundary is either solid or free. The aspect ratio,
H = H∗/r∗o , is of order unity. The molten metal is assumed a Newtonian incompress-
ible fluid, and the viscosity forces are small compared with the dominant rotational
(Coriolis) forces. Thus, the relevant Ekman number of the flow, E = ν∗/Ω∗refr

∗2
o , is

assumed very small, where ν∗ is the kinematic viscosity coefficient and Ω∗ref is the
typical angular velocity of the fluid. For definiteness, Ω∗ref is taken as the steady-state
value at the centre, as discussed below. We assume that the flow is laminar.

The laminar-flow assumption is probably not a realistic one, but nevertheless it
is expected to yield useful results. Since practically no experimental information is
available for the initial stage of the flow we must rely on some extrapolations from
related cases. First, in the experiments of Robinson (1973) the measured steady-state
was turbulent. Second, a close analogy is expected between the present problem and
the classic spin-down to rest in a cylinder, regarding the instantaneous behaviour of
the boundary layers: in both cases a rotating core of fluid is matched to non-rotating
solid boundaries by viscous mechanisms (the magnetic body force is relatively small in
the viscous layer). There is evidence that in impulsive spin-down to rest the ‘vertical’
sidewall region is unstable and Taylor–Görtler vortices appear after a short time,
essentially, during the first revolution of the fluid relative to the stationary wall for
Ekman numbers smaller than 2.9×10−3. For instance, Mathis & Neitzel (1985) report
that the onset time was about 4Ω∗−1

ref for E ≈ 6 × 10−4 in a cylinder of aspect ratio
H = 18.7. The onset time decreases as E decreases, and is not very sensitive to H . In
addition, the ‘horizontal’ Bödewadt layers (also loosely referred to as Ekman layers)
become unstable and turbulent for E < 1.6×10−3 (e.g. Savaş 1987; Lopez & Weidman
1996). It is therefore plausible to speculate that the magnetic-driven spun-up fluid
will be laminar until the Ekman number based on the instantaneous angular velocity,
Ω∗(t∗), reaches the critical value of about 2.9×10−3. If the spin-up continues to higher
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values of Ω∗ (smaller values of E, in particular E < 1.6 × 10−3) the flow is expected
to become unstable and turbulent during the spin-up interval.

However, the above mentioned evidence on instability is also accompanied by
the peculiar observation that the mean angular flow in the core during spin-down is
in fair agreement with the laminar prediction (Weidman 1976b; Savaş 1992). This
outcome may be attributed to the more basic experimental observations concerning
the turbulent boundary layer of a rotating core on a stationary disk: the profiles of
the mean velocity are similar to those of the classic Bödewadt laminar layer (Savaş
1987). Since the spin-down to rest of the core is dominated by the mean transport in
these layers, the agreement between the laminar model and the mean turbulent case is
less puzzling. The recent investigations of Lopez & Weidman (1996) also indicate the
possibility of restabilization of the Bödewadt layer beneath a core of fluid in almost
solid-body rotation. (We note in passing that the stability of the Bödewadt layer is
still an intriguing topic, which has been actually investigated only in spin-down-to-rest
circumstances; the flow discussed in this work provides, theoretically at least, novel
conditions for producing and sustaining a Bödewadt layer.)

These considewrations lend the main justification to the present investigation. We
show below that the spin-up of liquid metal driven by a magnetic field is controlled
by the same boundary layers as the spin-down to rest of a regular fluid. The accepted
fact that the laminar model gives qualitative and quantitative insights in the latter
problem yields strong expectations that the same is valid in the former problem. We
therefore proceed with the laminar theory, to provide at least a basis for comparison
with experiments which, to the best of our knowledge, are not yet available.

An additional feature that we attempt to clarify in the present paper is the influence
of the axial variation of the driving magnetic force on the resulting flow field during
the spin-up stage. In the experiments of Robinson (1973) the magnetic azimuthal
forcing decreased strongly with distance from the midplane (figure 8 in that paper).
However, the measured angular velocity was almost constant in the axial direction.
A similar behaviour was obtained in numerical experiments (see Davidson 1992,
p. 683). Davidson, Short & Kinnear (1995) provide a theoretical interpretation to
this curious result in the steady state by means of an order of magnitude analysis.
A more formal incorporation of this feature is used below, and it is shown that it is
consistent with the spin-up stage. Qualitatively, it reflects the inability of a fluid in
which rotation is the dominant motion to support an axial pressure gradient in the
(almost) inviscid core, in which the centrifugal accelerations are mainly supported by
a strong radial pressure gradient. Quantitatively, the use of an axially averaged forcing
for the evaluation of the angular velocity, as suggested by Davidson (1992), is also
justified during the spin-up interval. However, the axial variation of the forcing about
the average gives rise to some additional and quite strong motion in the meridional
plane, which may be of importance to the stirring process.

2. Formulation
The container is a symmetric cylinder of radius r∗o (which will serve as reference

length). We use a cylindrical coordinate system, r, θ, z, with origin at the centre of the
bottom solid wall; the top boundary at z∗ = H∗ is either free or solid. For the sake of
simplicity, the axial direction is also referred to as ‘vertical’ and the planes z = const.
as ‘horizontal’. Again, the asterisk denotes a dimensional variable. Gravity effects are
neglected.
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We consider the driving force per unit volume of fluid to be of the form

F ∗ = 1
2
Ω∗2f r

∗ [1 + f(z)] θ̂, (1)

and ∫ H

0

f(z)dz = 0, (2)

where Ω∗f is a known constant. For definiteness, but without loss of generality,
the driving force, and hence the resulting swirl, are assumed here in the positive

θ̂-direction.
The connection between the model forcing (1) and a realistic magnetic forcing

produced by a transverse magnetic field B∗ rotating with frequency ω∗ about the
axis z of a contained metal fluid (of electrical conductivity and density σ∗ and ρ∗)
was pointed out, both theoretically and experimentally, by Davidson & Hunt (1987),
Davidson (1992) and Davidson et al. (1995) as follows: if the magnetic Reynolds
number µ∗ and σ∗U∗r∗o is small, and the frequency ω∗ is restricted to values smaller
than 3/(µ∗σ∗r∗2o ), where µ∗ is the permeability in free space and U∗ the typical flow
velocity, then the main resulting effect on the fluid can be approximated by (1) with

Ω∗f = B∗(σ∗ω∗/ρ∗)1/2.

In practical situations some deviations from the idealization (1) may occur, in par-
ticular a more complex dependency on r and perhaps an additional time-dependent
oscillatory component. For the sake of simplicity of the analysis and results, we use
(1) as an approximation and assume that these deviations will not cause qualitative
differences from the present approach, and therefore the present results will provide at
least significant insights and guidelines for both experiments and further theoretical
investigations.

A typical value for the angular velocity is needed for the proper scaling of the
Navier–Stokes equations. For this purpose we chose the steady-state angular velocity
at the centre, which, as deduced from the analysis of Davidson (1992) and confirmed
later by the present study, is

Ω∗ref =

(
1

4c

)2/3

Ω∗f

(
Ω∗fH

∗2

ν∗

)1/3

(3)

where

c = 1.35
n

2
, (4)

and n is the number of solid horizontal boundaries, i.e. n = 1 when the upper surface
is free and n = 2 otherwise.

The dimensionless variables are scaled as follows: length with r∗o , velocity with
Ω∗refr

∗
o , pressure with ρ∗Ω∗2refr

∗2
o ; the dimensionless time, denoted τ, is scaled with the

spin-up time H∗(ν∗Ω∗ref)
−1/2 = E−1/2H/Ω∗ref . Here

E =
ν∗

Ω∗refr
∗2
o

(5)

is the Ekman number.
The dimensionless equations of motion, on account of the driving force (1) are

∇ · v = 0, (6)
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E1/2

H

∂v

∂τ
+ v · ∇v = −∇p+ E∇2v +

E1/2

H
2cr [1 + f(z)] θ̂, (7)

and are subject to the initial condition v = 0 and to the usual boundary conditions
on solid walls and on the free surface when present.

When E � 1 the flow field can be modelled as a ‘core’ embedded in thin viscous
boundary layers. In particular, at the ‘horizontal’ solid walls, Bödewadt-type viscous
layers are expected to appear†. Since the O(E1/2) circulation generated by these layers
controls the interior flow, we anticipate (cf. Greenspan 1968, § 3.7), that in the core
0+ < z < H− the velocity field may be represented by an expansion in powers of E1/2

according to

v = E1/2(u1 + E1/2u2 + · · ·)r̂ + (v0 + E1/2v1 + · · ·)θ̂ + E1/2(w1 + E1/2w2 + · · ·)ẑ, (8)

p = p0 + E1/2p1 + · · · , (9)

ψ = E1/2(ψ1 + E1/2ψ2 + · · ·), (10)

where the dependent variables v0, u1 etc., are expected to be O(1) functions of r, z and
τ, and the stream function is defined by ur = ∂ψ/∂z, wr = −∂ψ/∂r. We substitute
(8)–(9) in the governing equations and seek solutions for the zeroth- and first-order
terms only; there is not sufficient resolution in the boundary-layer flow to validate
results for additional terms.

The balance for the zeroth-order terms follows from the radial and axial momentum
equation as

v2
0

r
=
∂p0

∂r
,

∂p0

∂z
= 0, (11)

from which v0 = v0(r, τ). The azimuthal momentum equation yields, to leading order,
after some rearrangement,

∂v0

∂τ
+Hu1

1

r

∂

∂r
(rv0) = 2cr [1 + f(z)] ; (12)

and the relevant continuity equation is

1

r

∂

∂r
(ru1) +

∂

∂z
w1 = 0. (13)

It is convenient to split the radial velocity into the axial-average and a perturbation
about it components,

u1(r, z, τ) = ū1(r, τ) + û1(r, z, τ) (14)

such that
∫ H

0
û1dz = 0. Substitution of (14) in (12) yields

∂v0

∂τ
+Hū1

1

r

∂

∂r
(rv0) = 2cr, (15)

and

û1 =
2cr

H(1/r)(∂/∂r)(rv0)
f(z). (16)

It is emphasized that, in view of (16) and (2), the net mass transport by the second
component in the right-hand side of (14) is indeed zero. Therefore, considering the
global continuity in a cylindrical control volume extending from bottom to top, we

† The magnetic forcing term turns out to be O(E1/2) relative to the viscous terms in this layer,
as indicated by Davidson (1992). Therefore, the standard results may be used.
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obtain ∫ H−

0+

u1dz = Hū1(r, τ) = −
[
Q̃T + Q̃B

]
E−1/2, (17)

where Q̃ is the contribution of one boundary layer to radial volume transport (the
integral of the radial velocity over the width of the layer) and the superscripts T and
B denote top and bottom.

If the horizontal boundary is a solid wall the layer on it is of the Bödewadt type.
The time of formation and adjustment of such layers is of order Ω∗−1

ref , hence they are

quasi-steady on the spin-up time interval of order E−1/2Ω∗−1
ref . Consequently, we can

employ the Ekman layer transport correlation†

Q̃ =− 1
2
κE1/2(v0/r)

1/2r on a solid wall
= 0 on a free surface,

(18)

where

κ ≈ 1.35.

Substitution of (18) into (17) gives

Hū1(r, τ) =
n

2
κ(v0r)

1/2, (19)

where n = 1 if the upper boundary is free or n = 2 if the upper boundary is rigid.
Now we can eliminate Hū1 from (15) and (19) to obtain a single equation for the
azimuthal velocity. It is convenient to first recast this result of (15) and (19) into an
equation for the angular momentum,

∂Γ

∂τ
+ 1

2
nκΓ 1/2 ∂Γ

∂r
= 2cr2, where Γ = v0r; (20)

initially, Γ = 0. This is a standard equation amenable to solution by the method
of characteristics, and we observe that all the characteristics satisfy dr/dτ > 0 for
τ, r > 0, and dr/dτ = 0 at r = 0. Hence no boundary conditions on the lateral
wall, r = 1, are required or possible; we shall see later that such conditions can
be incorporated with the addition of a viscous term into the balance of azimuthal
momentum, but the influence is confined to a thin region if HE1/2 is small. Regarding
the direction of propagation of the characteristics of the equation for Γ in the core,
the present problem is identical with that of the spin-down to rest in a cylinder, but
is different from the spin-up from rest in a cylinder. Indeed, in the latter problem it
is the inward propagation of the characteristics from r = 1 that carries the essential
information.

With these observations in mind, we can facilitate the solution of the azimuthal
motion in the core by considering the equation for the angular velocity, readily
obtained from (20) as

∂Ω

∂τ
+ nκΩ3/2 + 1

3
nκr

∂Ω3/2

∂r
= 2c, where Ω = v0/r = Γ/r2, (21)

subject to Ω(r, τ = 0) = 0. It is evident that, if no boundary condition on r = 1 is to
be imposed, an initial r-independent Ω will remain r-independent, i.e. the underlined

† The dimensional thickness of this layer is ∼ 8[ν∗/Ω∗I ]
1/2. In dimensional form,

Q̃∗ = −0.5κ[ν∗/Ω∗I ]
1/2Ω∗I r

∗, where Ω∗I is the angular velocity (in absolute value) of the fluid far
away from the stationary disk; the − sign shows that the transport is from the periphery to the
centre. See Greenspan (1968, § 3.2).



Spin-up of liquid metal 111

2.0

1.5

1.0

0.5

0
0.2 0.4 0.6 0.8 1.0

Ω

nκ

2
τ

Figure 1. Reduced time vs. Ω, inviscid core: —, exact and - - -, approximate results of (21).

term on the left-hand side starts as and remains identically zero. (It will be shown
later that even the influence of the sidewall is unable to excite the ∂Ω3/2/∂r term
outside the viscous shear layer.) We conclude that in the core under consideration the
angular velocity is a function of time only, that we determine as follows.

First, we note that setting the coefficient c in the definition (3) to

c =
nκ

2
≈ 1.35

n

2

renders Ω = 1 in steady state, which justifies (3)–(4). With this value of c, the solution
Ω(τ) of (21) can be expressed in implicit form as

τ =
2

nκ

[
1

3
ln

(1 + b+ b2)1/2

|1− b| +
1√
3

(
arctan

√
3b

2 + b
− π

3

)]
, where b = Ω−1/2. (22)

Series expansions provide the explicit approximations

Ω ≈ nκτ for τ� 1, (23)

Ω ≈ 1− 2
√

3 exp

[
−
(

π

2
√

3
+ 3

2
nκτ

)]
, for τ� 2

3
. (24)

Figure 1 displays these results. The approximations (23) and (24) have fair accuracy
for 1

2
nκτ smaller and larger than 0.5, respectively.

Essentially, 99% of the steady-state swirl is achieved in τ ≈ 1.7(2/n) dimensionless
time units. In dimensional form the corresponding time is

t∗ ≈ 1.7(2/n)2/3H∗
/0.32ν∗Ω∗f

(
Ω∗fH

∗2

ν∗

)1/3
1/2

.

Thus, if the upper boundary is free, the spin-up time is longer than in the configuration
with two rigid walls. The factor of increase is only 22/3 because in the steady state
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Ω∗ref itself is larger in the former case, which partly compensates for the lack of the
upper layer during the spin-up process.

We remark about (21) with Ω(r, 0) = 0 that
(1) The influence of the outer wall, r = 1, or any other radial dependency, is

missing. Thus, this equation also describes an infinite disk configuration. In the
steady-state limit the analysis of Davidson (1992, § 3) for such a configuration is
recovered. In classical spin-up from rest (Wedemeyer 1964) the outer wall and the
radial dependency are essential. On the other hand, in spin-down to rest (Weidman
1976) the interior flow is not dependent on r, and is given by a similar equation (with
zero right-hand side and a non-zero initial condition). Thus, although we deal here
with a spin-up-from-rest problem, we detect close similarity with the spin-down-to-rest
problem.

(2) The second term on the left-hand side represents the boundary layer effect. At
the beginning of the motion Ω grows due to the magnetic forcing (the right-hand
side) with little hindering from the boundary layer friction, as reproduced by (23).

(3) Reconsidering the expansions (8)–(9), we realize that the validity is restricted to
small values of the instantaneous Ekman number, [E/Ω(τ)]1/2 � 1, which on account
of (23) can be expressed as

τ� E. (25)

This is actually a mild restriction if we follow the development of the flow field for
many revolutions of the fluid as in a typical spin-up process. According to (23) the
time required for the fluid to perform the first revolution is τ ∼ E1/4, and the poor
accuracy of the results during the first cycle is common to approximations based on
quasi-steady Ekman layers. Indeed, for times shorter than one revolution of the fluid
an inviscid analysis as presented by Davidson (1989) and Davidson & Boysan (1991)
may be applied.

With the known solution v0 = Ω(τ)r the meridional flow can be easily determined.
First, using (14), (16)–(18), we express the radial velocity as

u1(r, z, τ) =
nκ

2H

[
[Ω(τ)]1/2 +

1

Ω(τ)
f(z)

]
r; (26)

next, using the continuity equation and in conjunction with (10) gives

w1(r, z, τ) = −nκ
H

[
[Ω(τ)]1/2 z +

1

Ω(τ)

∫ z

0

f(z̄)dz̄

]
+ κ[Ω(τ)]1/2 , (27)

ψ1 = − 1
2
r2w1. (28)

The last term in (27) is the contribution of the viscous layer on the bottom. Recall
that f(z) represents the variation of the magnetic driving. This supports the axial
variation of the azimuthal Coriolis acceleration and allows the formation of a z-
dependent component of the radial velocity. This component may be large at small τ
because when the swirl velocity is small there is little Coriolis hindrance to the radial
motion. But evidently, for τ → 0, if f(z) is not identically zero equations (26)–(27)
yield a non-physical result. This is because the instantaneous Ekman number is not
small near the onset of the motion and the expansion (8) is not valid. Actually, the
condition (25) – or the realization that the analysis should not be applied during the
first revolution of the fluid – is sufficient to eliminate the non-physical behaviour of
(26) for τ → 0. The formal validity of the expansion procedure requires u1 = O(1)
which implies |f(z)| 6 E1/4 for the times of interest, but a violation of this formal
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restriction may be tolerated because Ω is substantially larger than E1/2u1 even for
|f(z)| = O(1), and this is the backbone of the simplifications used here, in particular
of (11). Actually, it can be argued using order of magnitude considerations that, even
during the very initial stage the swirl motion is larger than the meridional circulation,
and that the latter always tends to smooth out z-variations in the former.

The influence of the axial variation of the driving force on the meridional flow in
the core is illustrated in figure 2 for representative forms of f(z): (a) zero, (b) linear
and (c) parabolic profiles. It is worth noting that non-zero f(z) creates regions of
negative u which may be beneficial in stirring processes.

2.1. Outer wall influence

The core angular velocity Ω(τ) as given by (22) must be accommodated to the no-
slip boundary condition at r = 1. The similarity with the linear spin-down problem
suggests that a viscous region appears near the cylindrical wall, reminiscent of the
E1/4 Stewartson layer, where v0 varies strongly with r, but is still independent of z.
Indeed, an order of magnitude analysis of the azimuthal component of (7) shows
that the viscous term E(∂2v0/∂r

2) is able to counteract the forcing term (E1/2/H)2c
in a boundary layer of thickness H1/2E1/4. On the other hand, the convection of
angular momentum into this layer is expected to reduce its thickness and invalidate
the z-independence of v0.

For a more quantitative modelling of this region we may add the pertinent shear
term, HE1/2(∂/∂r)(1/r)(∂/∂r)rv0, to the right-hand side of (12) and (15). Therefore
the equation for Ω(r, τ), that replaces (21), is

∂Ω

∂τ
+ nκΩ3/2 + 1

3
nκr

∂Ω3/2

∂r
= 2c+HE1/2

(
∂2Ω

∂r2
+

3

r

∂Ω

∂r

)
, (29)

subject to Ω(r, 0) = 0, Ω(1, τ) = 0, and ∂Ω/∂r = 0 at r = 0.
The solution is readily obtained by a finite-difference method, and typical results

are shown in figure 3. As expected, the flow in the interior r < 1 − H1/2E1/4 is
accurately described by the ‘inviscid core’ Ω = Ω(τ) result, see (22). Although the
underlined convection term is now excited (unlike in the treatment of the core), its
influence remains restricted to the shear layer region and the angular velocity in
the core remains r-independent. Actually, this convection term causes a considerable
shrinking of the shear layer (a known effect for the E1/4 layer in a sink region for
non-small Rossby numbers). Indeed, the dominant balance between the convection
term (nκ/3)(∂Ω3/2/∂r) and the shear term HE1/2(∂2Ω/∂r2) would even indicate a
layer of thickness O(E1/2). A thin layer with strong shear action is needed to reduce
the angular momentum of the fluid convected from the core into the side layer (by
about 20%) in order to make it compatible with the fluid returned toward the centre
by the Bödewadt layers. However, the details of the flow in the sidewall layer and
of its matching to the Bödewadt layer is beyond the scope of this paper (for some
indications on the possible relevant features see Greenspan 1968, § 3.3).

An essential difference between the classic problem of spin-down to rest in the
absence of a magnetic field case and the present problem regarding the viscous sidewall
layer must be noted: in spin-down to rest the viscous region diffuses continuously
into the interior but here the thickness of the side layer increases to a final, fixed
steady-state value. In the former case the effective Ekman number increases with
time, while in the latter it decreases to a steady-state value.

However, it is well known that profiles of Ω vs. r of the form given in figure 3
are prone to Taylor–Görtler instabilities, hence the results for this region should be
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Figure 2. Ω vs. r (in core and near sidewall), for various τ′ (= τκ), upper and lower walls rigid,
(HE1/2/κ) = 10−2. Spin-up from rest

considered mainly as a qualitative indication on the pattern by which the internal swirl
is accommodated to the wall; the quantitative effects of instabilities and turbulence
on the foregoing side layer considerations require a separate investigation. Mathis &
Neitzel (1985) report that in their spin-down-to-rest experiments the onset time for
Taylor–Görtler vortices increases with E. In particular: (a) for E ≈ 6×10−4 the onset
occurs in less than one revolution of the fluid, considerably less than the spin-up
process, and (b) no Taylor–Görtler vortices were observed when E > 2.9× 10−3. We
may infer that the same results are valid for the present flow during the spin-up
interval, because the effective Ekman number is E/Ω(τ), which is of course larger
than E during the spin-up stage.

3. Spin-down
Suppose that at some advanced stage of the previously discussed process, say at

τ = 1, the magnetic field is turned off. The subsequent spin-down motion may be of
interest in two practical circumstances:

(a) when the relevant region of molten metal is withdrawn from the magnetic
section by the axial motion of the ingot;

(b) when the stirring process is designed as a succession of on-off magnetic forcing,
with possible change of direction (Kojima et al. 1983).

According to the previous results, the spin-down will start from a state of almost
uniform angular velocity. Therefore, the fluid is expected to behave like in the classic
cases of spin-down to rest (Weidman 1976a, b; Savaş 1992).

From the viewpoint of mathematical modelling, we may use the foregoing formu-
lation with no forcing term; in particular, to obtain Ω during spin-down we set the
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Figure 3. Spin-down in the configuration of figure 3, with magnetic forcing turned off at τ′ = 1.

first term on the right-hand side of (21) and (29) equal to zero, and change the ‘initial
conditions’. A typical behaviour is shown in figure 4. Comparison with figure 3 shows
that the main spin-down events are qualitatively similar, but with time reversed, to
the features of the spin-up under the magnetic driving: the angular velocity is almost
uniform and dominant; the Ekman layers pump fluid from the periphery into the inte-
rior; and the net radial flow in the core is toward the periphery. The evident difference
between spin-up and spin-down here is the increase vs. decrease of the angular velocity
in the core and the compression vs. expansion of the sidewall layer. Of course, there
may be a meridional flow in spin-up due the the axial variation of the driving force,
f(z) 6≡ 0, that will not be present in spin-down after the removal of the driving force.

Davidson (1989) and Davidson & Boysan (1991) discuss a flow of metal fluid
in a cylinder that may appear after the removal of the magnetic field. An essential
assumption in these papers is that the swirl velocity is z-dependent and the meridional
circulation is strong (i.e. the velocity components u, v, w are of the same order of
magnitude). In the present flow field that emerged from the spin-up from rest the
axial dependency of the swirl and the meridional circulation are expected to be small,
O(E1/2). Hence the type of flow studied by Davidson (1989) and Davidson & Boysan
(1991) is not expected to be an essential component in the spin-down stage of the
present configuration.

4. Concluding remarks
A simple model for the spin-up from rest of liquid metal in a cylindrical cavity

due to a rotating magnetic field has been presented. The solution provides insight
into the behaviour of the velocity field and furnishes the time span of the process.
The driving force was assumed to vary linearly with r, but moderate and smooth
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deviations from this form, as expected in practical devices, are not expected to cause
significant differences from the present results.

We found that the spin-up behaviour of a magnetic-driven liquid is very different
from the classic case studied by Wedemeyer (1964), because the forcing is different.
In Wedemeyer’s problem the spin-up effects in the core propagate from the periphery
into the interior: the angular velocity of the fluid increases with r in the domain
r > rF (τ) and is zero in the shrinking region r < rF (τ), where rF (τ) = exp(−2τ/n).
In the present case the angular velocity in the core is not r-dependent, and the
radial motion in the core is toward the periphery. These features are more typical
of the classic spin-down-to-rest process studied by Weidman (1976a, b); we therefore
expect that the flow becomes unstable and turbulent before the accomplishment of
the process, see also Savaş (1987) and Lopez & Weidman (1996).

The laminar flow analysis performed here is expected to be relevant to the mean
motion. The verification of this conjecture by additional theoretical (perhaps numer-
ical) work is a topic for future investigation. We also hope that the present results
will serve as guidelines for the very difficult experimental investigation of the spin-up
and spin-down of liquid metal.

The comments and suggestions of Dr P. A. Davidson and Professor P. D. Weidman
are appreciated. The research was partially supported by the Fund for the Promotion
of Research at the Technion, Israel, and by the EPSRC, UK.
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